Volume 9(3): 450-469 (2025) (http://www.wildlife-biodiversity.com/)

Research Article

Diversity and ecology of mammals of Bahawalnagar, South Punjab, Pakistan

Jawad Ahmad¹, Adil Riaz², Ghulam Rasool³, Sana Ashraf⁴, Muhammad Haroon Hamed⁵, Muhammad Ameen⁶, Sundas Asghar⁷, Muhammad Zohaib⁴, Ayesha Ishaq⁸, Muhammad Waris⁹, Muhammad Tariq¹⁰, Muhammad Junaid⁴, Naseem Mukhtar⁴, Mubashir Mumtaz⁴, Muhammad Qasim⁴, Abdul Majid Khan¹¹, Muhammad Imran¹¹, Noushin Irshad¹², Muhammad Altaf^{13*}

Received: 13 May 2025 / Revised: 26 September 2025 / Accepted: 30 September 2025/ Published online: 18 October 2025. How to cite: Ahmad, J., et al. (2025). Diversity and ecology of mammals of Bahawalnagar, South Punjab, Pakistan, Journal of Wildlife and Biodiversity, 9(3), 450-469. DOI: https://doi.org/10.5281/zenodo.17393200

¹Department of Zoology, The Islamia University of Bahawalpur, Bahawalnagar Campus, Pakistan

²Department of Zoology, University of Kotli, Azad Jammu and Kashmir, Pakistan

³Deputy Director, Wildlife, Punjab Wildlife and Parks Department, Pakistan

⁴Department of Zoology, University of Lahore, Sargodha campus, Pakistan

⁵Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan

⁶Department of Zoology, University of Sialkot, Pakistan

⁷Department of Biological Sciences, The Superior University, Lahore

⁸Department of Zoology, University of Okara, Pakistan

⁹Department of Zoology, University of Veterinary and Animal Sciences, Lahore, Pakistan

¹⁰Department of Livestock Management, University of Agriculture Faisalabad, Sub-Campus Toba Tek Singh, Pakistan

¹¹Institute of Zoology, University of the Punjab, Lahore, Pakistan

¹²Department of Zoology, University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan

¹³Insitute of Forest Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan

^{*}Email: altafweco@gmail.com

Abstract

Pakistan has 195 species of mammals and diverse habitats, with three zoogeographical realms: Palearctic, Oriental, and Ethiopian. Approximately two-thirds of the area is mountainous, and abrupt altitude changes result in variations in diversity over short distances. The key objectives of this study are to examine the diversity, distribution, and ecological status of mammalian species in Bahawalnagar, Puniab, Pakistan, Data collection was done twice every month throughout the day and night for one year using the Linear Count Method. The research identified 21 mammalian species from district Bahawalpur. The diversity indices show that the area has a high and rich diversity, as the Dominance Index is 0.1605, Simpson Index is 0.8395, Shannon-Wiener diversity index (H') is 2.124, the evenness (E) is 0.3982 and the richness index (R) is 2.648, and in the study area. During the survey, the highest relative abundance (abbreviated as RA = 0.26261) of Mus musculus is documented from Bahawalnagar. The lowest relative abundance (RA = 0.00105) is noted in three species (i.e. Vulpes bengalensis, Viverricula indica and Antilope cervicapra) in the natural habitats of Bahawalnagar. These three species are rarely seen in the study area. It is documented that Rattus rattus, Herpestes edwardsii, Millardia meltada and Canis aureus also have high relative abundances as 0.21008, 0.15756, 0.10504 and 0.07773 respectively.

Keywords: Bahawalnagar, abundance, ecology, mammals, diversity

Introduction

Pakistan is a key country for faunal diversity (Sial, 2024), home to at least 195 recorded mammalian species (Roberts, 1997). Conservation efforts have been initiated to protect this diversity through the establishment of various conservation areas, such as national parks, wildlife reserves, and sanctuaries (Bolaane, 2004; Green et al., 2024). But managing such environments

can have a negative influence on animals in a number of methods including degradation of habitat, enhanced human-wildlife relations, and decreased fertility rates. As a result, knowing the differences in mammalian diversity (Altaf et al., 2014), distribution, and abundance is important for handling environmentally friendly land-management approaches.

Mammalian populations are vital to the proper function and structure of ecosystems and can modify nutrient routes, change the structure of plants, and ultimately effect the species composition of the ecosystem (Hantak et al., 2021). They are essential seed dispersers for various tree species (García-Rodríguez et al., 2022), participating in food networks at multiple trophic levels and assisting in herbivore control (Tourani et al., 2023). Despite this, mammals provide many economic benefits to people, including food (Alves et al., 2021), pets, (Bashir et al., 2024; Shivambu et al., 2021), medicine (Faiz et al., 2022), ornamental (Shivambu et al., 2021), and tourism (Barcelos et al., 2022). Recent increases in both anthropogenic and natural factors have put the survival of mammals at risk (Pérez-Irineo et al., 2021). Key contributors to the decline of mammal species include overexploitation (Vuorinen et al., 2021), fragmentation (Kuipers et al., 2021), global climate change, and various other human-induced pressures threatening mammals in the worldwide (Riddell et al., 2021). Mammals serve as key indicators for evaluating human impact on biodiversity and play a vital role in maintaining ecological functions (Jacob et al., 2024). The continuous disappearance of species across the globe is decreasing the variety of ecological roles organisms perform in communities, as well as the number of evolutionary lineages present (Altaf et al., 2022). Understanding which anthropogenic factors have the most severe impacts on functional and evolutionary diversity is challenging, as is discerning whether the loss of these aspects of diversity is outpacing, or lagging behind, the reduction in species numbers (Brodie et al., 2021). In this case, we demonstrate that unique mammals which perform critical functions within their ecosystems are especially

vulnerable to overhunting, species dislike (Ejaz & Rasheed, 2024) and habitat destruction in the most species-rich regions (Bennett, 2023). There is an immediate and grave need to enhance protective measures, particularly concerning the sustainability of harvesting, to avert the decline of biodiversity and ecosystem functions (Sharma & Birman, 2024).

Bahawalnagar, situated in South Punjab, Pakistan, features a diverse ecological landscape that includes a mix of habitats such as arid plains, agricultural fields, river areas, and scattered native flora. This ecological diversity supports a wide range of mammal species, many of which are poorly documented due to limited scientific research and increasing human influence. The area's proximity to the Sutlej River and its transitional between desert as well as agricultural land make it ideal for investigating mammal diversity and environmental relationships. But challenges like as fragmentation of habitat, development of agriculture, and conflict between humans and mammals pose serious threats to the indigenous species of mammals (Jahangeer & Awan, 2024). As a consequence, an in-depth knowledge of the richness, distribution, and ecological roles of mammals in this overlooked area is essential in developing effective conservation efforts to sustain the balance of nature. The key objectives of this study are to examine the diversity, distribution, and ecological status of mammalian species in Bahawalnagar, Punjab, Pakistan.

Material and methods

Study area

Bahawalnagar is also known as a district of the Punjab province in Pakistan (Fig. 1). Before the independence of Pakistan, Bahawalnagar was included within the Bahawalpur state, which was ruled by the Nawab of Bahawalpur. The district capital is located in the city of Bahawalnagar. The eastern and southern boundaries of Bahawalnagar border the Indian district of Bikaner, while

the Firozpur and Bahawalpur districts are to its west, and the River Sutlej flows to its north. District Bahawalnagar extends over a cross-section of 8,878 square kilometers. According to the census of 2023, there are 557,616 households and a population of 3,550,342 in the Bahawalnagar district. The sex ratio of the district is 108.27 males to 100 females, and the literacy rate is 57.01 percent: 63.55 percent male and 49.95 percent female. A total of 971,921 individuals (27.42 percent of the surveyed population) are below ten years of age. Additionally, 974,118 individuals (27.44 percent) reside in urban areas (Hussain & Shaikh, 2025; Iqbal et al., 2023).

Data collection

From July 2024 to June 2025, data was gathered in Bahawalnagar by a team of two field members using both direct and indirect approaches to study mammalian species. The two-person team employed these methods to collect data, and field guides were utilized for accurate species identification (Roberts, 2005a,b).

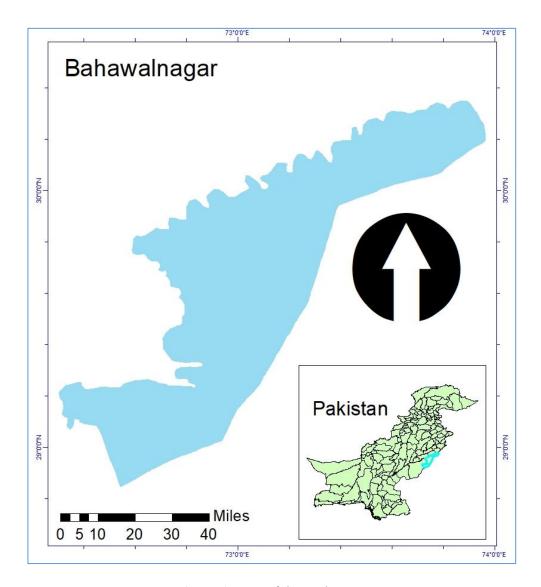


Figure 1. Map of the study area.

The research group spends an excessive amount of time studying the study area and conducting numbers to identify the mammalian species present. The researchers recorded noises and identified the species; voice counts from the same species were combined. Data collection was done twice every month throughout the day and night for one year using the Linear Count Method. In the designated study area, the researchers collected fecal pellets from wild mammalian species for observational identification purposes. They also examined mammal

pugmarks and footprints to determine species identification. The researchers identified the species of animal carcasses reported in the study region. The researchers also gathered photographs of mammalian species from residents and wildlife photographers in Bahawalnagar. Hair mounting procedures were used to evaluate species hair samples collected in the study region. Furthermore, the researchers acquired data through the use of standardized questionnaires delivered to the local populace.

Statistical analysis

The parameters of diversity, such as Dominance Index, Simpson Diversity Index, Shannon Diversity Index, Evenness Index, and Richness Index, were analyzed with the help of PAST Statistical Software (Version 5.1). Graphs are compiled using the assistance of the OriginPro (2023b) statistical software and the R Program (4.5.1).

Results

Data was collected from 75 Muslim male (n=74) and female (n=1) informants, who work in various professions such as teachers (n=6), students (n=20), housewives (n=5), shopkeepers (n=2), farmers (n=31), shepherds (n=4), hunters (n=3), and wildlife experts (n=4). Most respondents are educated (58.7%), with only a few holding higher education degrees (14.7%); the majority have completed secondary education (26.7%) (Fig. 2). The ages of the selected informants range from 18 to 78 (Fig. 3).

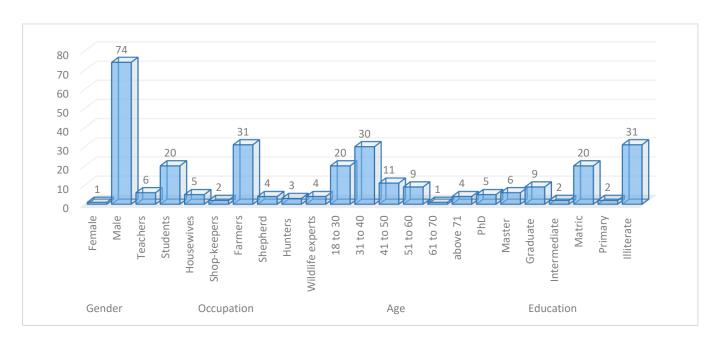


Figure 2. Respondents' profile of the study area

Figure 3. Respondents of the study area

Mammalian diversity

During the research, 21 species (i.e. Antilope cervicapra, Boselaphus tragocamelus, Gazella bennettii, Sus scrofa, Canis aureus, Canis lupus, Herpestes edwardsii, Herpestes javanicus, Viverricula indica, Vulpes bengalensis, V. v. pusillus, Felis chaus, Hemiechinus collaris, Suncus murinus, Lepus nigricollis, Funambulus pennantii, Hystrix indica, Meriones persicus, Millardia meltada, Mus musculus and Rattus rattus) of mammals (Fig. 4 and 5), belongs to 12 families (i.e. Erinaceidae, Felidae, Hystricidae, Bovidae, Herpestidae, Sciuridae, Leporidae, Muridae, Soricidae, Canidae, Viverridae and Suidae) (Fig. 6) and 6 orders (i.e. Erinaceomorpha, Artiodactyla, Carnivora, Lagomorpha, Rodentia and Insectivora) (Fig. 7 and Table 1). M Altaf et al. (2014) observed 15 species of mammals from the Chenab River in Punjab, Pakistan, belonging to 10 families and 6 orders. Roberts (1997) identified 23 mammalian species from the Chenab River, belonging to 11 families, and 6 orders. Sial (2024) noted 12 different species of mammals, belonging to 7 families and 4 orders.

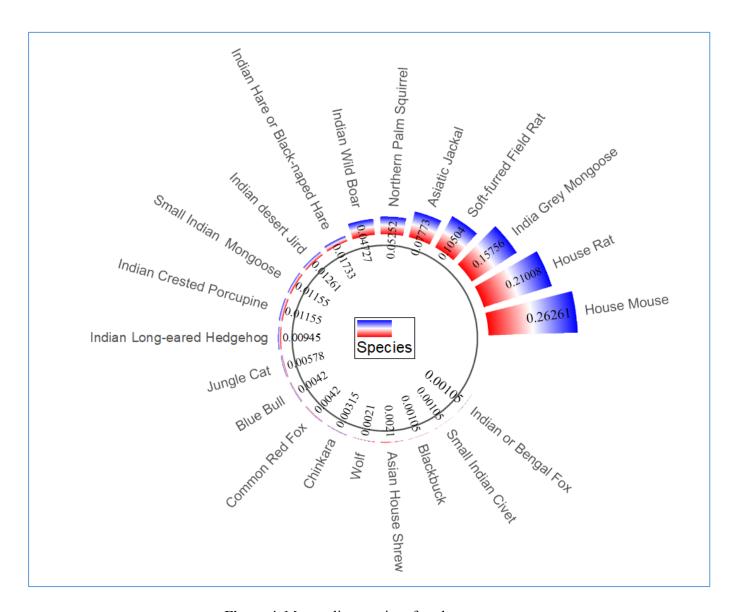


Figure 4. Mammalian species of study area

Figure 5. Mammalian species of study area i.e. (A) Indian Long-eared Hedgehog, (B) Northern Palm Squirrel and (C) Indian desert Jird

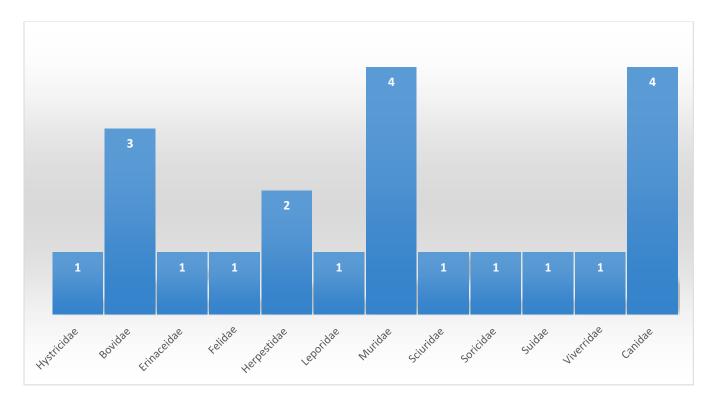


Figure 6. Families of mammalian species in the study area

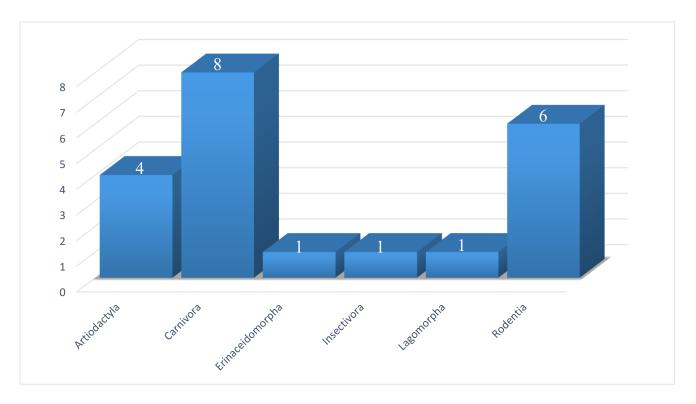


Figure 7. Orders of mammalian species in the study area

The diversity indices show that the area has a high and rich diversity, as the Dominance Index is 0.1605, the Simpson Index is 0.8395, the Shannon-Wiener diversity index (H') is 2.124, the evenness (E) is 0.3982, and the richness index (R) is 2.648, in the study area (Table 2). M Altaf et al. (2014) documented that the Shannon-Wiener diversity index for mammal species at Head Marala, Head Khanki, and Head Qadirabad was 0.86, 0.97, and 0.98, respectively. Species evenness was 0.38 at Head Qadirabad, 0.39 at Head Khanki, and 0.2 at Head Marala. Additionally, species richness was measured at 6.6 for Head Qadirabad, 6.2 for Head Khanki, and 7.1 for Head Marala. Sial (2024) reported the Shannon-Wiener indices for Sulmanki, Islam, and Panjnad as 2.20, 2.13, and 2.45, respectively. The species richness index was consistent across all three sites, measuring 1.61. Additionally, the species evenness values were 0.95 for Sulmanki, 0.92 for Islam, and 1.00 for Panjnad.

Table 2. Diversity indices of mammalian species of Bahawalnagar, Pakistan

Diversity Indices	Number
Species	21
Populations	1904
Dominance Index	0.1605
Simpson Index	0.8395
Shannon-wiener Index	2.124
Evenness Index	0.3982
Richness Index	2.648

During the survey, the highest relative abundance (abbreviated as RA = 0.26261) of *Mus musculus* is documented from Bahawalnagar. The lowest relative abundance (RA = 0.00105) is noted in three species (i.e., *Vulpes bengalensis, Viverricula indica,* and *Antilope cervicapra*) in the natural habitats of Bahawalnagar. It is documented that *Rattus rattus, Herpestes edwardsii, Millardia meltada,* and *Canis aureus* also have high relative abundances of 0.21008, 0.15756, 0.10504, and 0.07773, respectively. *Funambulus pennantii* (0.05252), *Sus scrofa* (0.04727), *Lepus nigricollis* (0.01733), *Meriones hurricane* (0.01261), *Herpestes javanicus* (0.01155), *Hystrix indica* (0.01155), *Hemiechinus collaris* (0.00945), *Felis chaus* (0.00578), *Boselaphus tragocamelus* (0.0042), *Vulpes vulpes pusillus* (0.0042), *Gazella bennettii* (0.00315), *Canis lupus* (0.0021) and *Suncus murinus* (0.0021) are less common in the Bahawalnagar (Table 1). M Altaf et al. (2014) documented that Indian wild boar were the most abundant species along the river Chenab. According to Roberts (1997), the species can be found at elevations of up to 900 m in Pakistan and is a common mammal in Punjab and Sindh.

Varieties of mammals have been observed in cities instead of forests, with some choosing completely or partially disturbed places (Altaf et al., 2023). During the study noted that large and medium-sized animals are generally found in forested areas. Indian crested porcupines, small Indian mongooses, Northern palm squirrels, Asiatic jackals, and soft-furred field rats prefer

minimally disturbed environments. House rats, mice, and shrews, on the other hand, flourish in extremely disturbed habitats. Other studies have supported this finding (Altaf et al., 2023). Garbage in metropolitan areas provides food for carnivorous and omnivorous animal species alike (M Altaf, 2016). The data suggest that an open environment with animal food is the most critical factor in mammal dispersal. Both urban and rural areas provide food and human shelters, such as roofs and dwelling units. Some animal species are naturally shy and reject human interaction in their environment (Agravat et al., 2025). This could be a significant element in the dispersal of animals in urban environments (Ahmad et al., 2025; Altaf et al., 2023; Altaf et al., 2012; Khushbakhat et al., 2025). But the Asiatic jackal and wild boar invade residential areas when humans are not present or at night. While the reality is that medium and small mammals (such as the small Indian mongoose, jungle cat, and Indian crested porcupine) live in houses, a lot of people do not know about them.

Mammalian species in Bahawalnagar face serious dangers to their survival. Deforestation, a significant concern, involves the destruction of natural forests and plants for firewood or other uses, eliminating many species' natural habitats. Overhunting also contributes to the reduction of mammal populations, as people hunt them for medicine (Altaf, Khan, et al., 2021; Altaf et al., 2018), meat (Muhammad et al., 2024), fur (Altaf, Altaf, et al., 2021; M Altaf et al., 2017), and trophies. Furthermore, agricultural intensification, which expands territory dedicated to crops and livestock while eliminating natural barriers, causes habitat loss (Khushbakhat et al., 2025) and pollution (Altaf et al., 2024). Urbanization exacerbates these challenges by transforming woodlands and grasslands into cities and towns with roads and houses, making it difficult for animals to find food and shelter. Finally, climate change alters temperature and precipitation

patterns, resulting in water and food deprivation for mammals. Together, these factors threaten the survival and prosperity of many mammal species in Bahawalpur.

References

- Agravat, A., Pandey, S., Padhan, A., & Samal, A. (2025). Ecological Observations and Updated Locality Record of Ratel (*Mellivora capensis*) in Khirsara Reserve Forest, Gujarat, India. *Journal of Wildlife and Ecology*, 9(2), 208-215.
- Ahmad, J., Altaf, M., Khan, M. S. H., Tanveer, M., Junaid, M., Ayoub, H., . . . Shahzad, U. (2025). Desert Life Unveiled: Diversity of Mammals at Cholistan, Punjab, Pakistan. *Journal of Wildlife and Ecology*, 9(1), 10-21.
- Altaf, M. (2016). Assessment of avian and mammalian diversity at selected sites along river Chenab. Phd thesis, University of Veterinary and Animal Sciences, Lahore, Pakistan.
- Altaf, M., Abbasi, A. M., Amjad, M. S., Naseer, S., & Umair, M. (2022). Wildlife as a source of SARS-coV-2 evolution-A review. *Pakistan Journal of Zoology*, *54*(4), 1899-1904.
- Altaf, M., Altaf, M., Amjad, M. S., Zahoor, S., Sultan, N., & Umair, M. (2021). Diversity and Uses of Wild Animals in Bagh, AJ&K, Pakistan. *Ethnobiology of Mountain Communities in Asia*, 269.
- Altaf, M., Ansari, Z. S., Ameen, M., & Abid, N. B. (2024). Smoke and Fog: Smog Impacts on Wildlife. *Journal of Wildlife and Ecology*, 8(3), 214-222.
- Altaf, M., Javid, A., Khan, A. M., Nazer, S., Iqbal, K. J., Haider, M. S., & Ashraf, S. (2023). Habitat Preferences of Wild Mammalian Species around River Chenab in Sialkot, Gujrat, and Gujranwala Districts, Punjab, Pakistan. *Pakistan Journal of Zoology*, 55(6), 2887-2893.

- Altaf, M., Javid, A., Munir, M., Ashraf, S., Umair, M., Iqbal, K., & Ali, Z. (2014). Diversity of wild mammalian fauna of Chenab riverine forest, Punjab, Pakistan. *JAPS: Journal of Animal & Plant Sciences*, 24(5).
- Altaf, M., Javid, A., Umair, M., Iqbal, K. J., Rasheed, Z., & Abbasi, A. M. (2017). Ethnomedicinal and cultural practices of mammals and birds in the vicinity of river Chenab, Punjab-Pakistan. *Journal of Ethnobiology and Ethnomedicine*, 13(1), 41.
- Altaf, M., Khan, A. M., Umair, M., Irfan, & Munir, M. A. (2012). Status of wild birds and mammals in urban habitats of Gujranwala, Punjab, Pakistan. *Punjab University Journal of Zoology*, 27(1), 9-12.
- Altaf, M., Khan, A. M., Zahoor, S., Umair, M., & Amjad, M. S. (2021). Ethno-Medicinal Uses of Wildlife in Azad Jammu and Kashmir, Pakistan. *Ethnobiology of Mountain Communities in Asia*, 175.
- Altaf, M., Umair, M., Abbasi, A. R., Muhammad, N., & Abbasi, A. M. (2018). Ethnomedicinal applications of animal species by the local communities of Punjab, Pakistan. *Journal of Ethnobiology and Ethnomedicine*, 14(1), 55.
- Alves, R. R. N., Borges, A. K. M., Barboza, R. R. D., Souto, W. M. S., Gonçalves-Souza, T., Provete, D. B., & Albuquerque, U. P. (2021). A global analysis of ecological and evolutionary drivers of the use of wild mammals in traditional medicine. *Mammal Review*, *51*(2), 293-306.
- Barcelos, D., Vieira, E. M., Pinheiro, M. S., & Ferreira, G. B. (2022). A before—after assessment of the response of mammals to tourism in a Brazilian national park. *Oryx*, *56*(6), 854-863.
- Bashir, M. A., Madnee, M., Chattha, S. A., Afrose, F., Kafinga, M. H., & Danturai, S. A. (2024). From Wild to Beloved: Benefits and Challenges of Pet Animals and their Significant Impact on Human Health. *Journal of Wildlife and Ecology*, 8(4), 206-213.

- Bennett, N. C. (2023). Towards a better understanding of life history strategies and the implications of habitat destruction on future mammal conservation (Vol. 2, pp. 1182856): Frontiers Media SA.
- Bolaane, M. (2004). The impact of game reserve policy on the River BaSarwa/Bushmen of Botswana. *Social Policy & Administration*, 38(4), 399-417.
- Brodie, J. F., Williams, S., & Garner, B. (2021). The decline of mammal functional and evolutionary diversity worldwide. *Proceedings of the National Academy of Sciences*, 118(3), e1921849118.
- Ejaz, A., & Rasheed, Z. (2024). Perceptions and Folklores about Mammalian species among the People of Azad Jammu and Kashmir, Pakistan. *Journal of Wildlife and Ecology*, 8(2), 96-108.
- Faiz, M., Altaf, M., Umair, M., Almarry, K. S., Elbadawi, Y. B., & Abbasi, A. M. (2022).
 Traditional uses of animals in the Himalayan region of Azad Jammu and Kashmir.
 Frontiers in Pharmacology, 13, 807831.
- García-Rodríguez, A., Albrecht, J., Farwig, N., Frydryszak, D., Parres, A., Schabo, D. G., & Selva, N. (2022). Functional complementarity of seed dispersal services provided by birds and mammals in an alpine ecosystem. *Journal of Ecology*, 110(1), 232-247.
- Green, N. S., Wildhaber, M. L., Albers, J. L., Pettit, T. W., & Hooper, M. J. (2024). Efficient mammal biodiversity surveys for ecological restoration monitoring. *Integrated Environmental Assessment and Management*, 20(6), 1969-1981.
- Hantak, M. M., McLean, B. S., Li, D., & Guralnick, R. P. (2021). Mammalian body size is determined by interactions between climate, urbanization, and ecological traits. *Communications Biology*, 4(1), 972.
- Hussain, M., & Shaikh, S. (2025). Nexus of Urban Expansion and Socio-Economic Transformation of Bahawalnagar, Pakistan: A Geospatial Perspective. *Journal of Asian Development Studies*, 14(1), 751-763.

- Iqbal, Z., Imran, M., Natasha, Rahman, G., Miandad, M., Shahid, M., & Murtaza, B. (2023).
 Spatial distribution, health risk assessment, and public perception of groundwater in Bahawalnagar, Punjab, Pakistan: a multivariate analysis. *Environmental Geochemistry and Health*, 45(2), 381-391.
- Jacob, D. E., Nelson, I. U., Okweche, S. I., Oko, P. A., & Izah, S. C. (2024). Suitability of mammals indigenous to the global south as bioindicator species for assessing environmental health *Biomonitoring of Pollutants in the Global South* (pp. 451-484): Springer.
- Jahangeer, M., & Awan, M. S. (2024). Distribution of common leopard (*Panthera pardus*) and human-common leopard conflict in Lachhrat Forest Range, Azad Jammu and Kashmir, Pakistan. *Journal of Wildlife and Ecology*, 8(1), 43-73.
- Khushbakhat, H., Altaf, M., Imran, M., Majeed, M. U., Ameen, M., Ahmad, J., & Ansari, Z. S. (2025). Spatial Distribution and Habitat Selection of Mammals in the vicinity of Lal Suhanra National Park, Pakistan. *Journal of Wildlife and Ecology*, 9(2), 164-175.
- Kuipers, K. J., Hilbers, J. P., Garcia-Ulloa, J., Graae, B. J., May, R., Verones, F., & Schipper, A.
 M. (2021). Habitat fragmentation amplifies threats from habitat loss to mammal diversity across the world's terrestrial ecoregions. *One Earth*, 4(10), 1505-1513.
- Muhammad, N., Saddam, B., Irshad, N., Altaf, M., Kabir, M., & Khan, M. S. H. (2024). Status of Indian Pangolin (*Manis crassicaudata*): the most trafficked mammal in Pakistan. *Journal of Wildlife and Ecology*, 8(3), 196-205.
- Pérez-Irineo, G., Hernández-Sánchez, A., & Santos-Moreno, A. (2021). Effect of anthropogenic activity on mammal activity patterns in two ecosystems. *Mammalia*, 85(4), 336-344.
- Riddell, E., Iknayan, K., Hargrove, L., Tremor, S., Patton, J., Ramirez, R., & Beissinger, S. (2021). Exposure to climate change drives stability or collapse of desert mammal and bird communities. *Science*, *371*(6529), 633-636.
- Roberts, T. J. (1997). The Mammals of Pakistan. New Yark: Oxford University Press.

- Roberts, T. J. (2005a). Field guide to the large and medium-sized mammals of Pakistan. New Yark: Oxford University Press.
- Roberts, T. J. (2005b). Field guide to the small mammals of Pakistan. New Yark: Oxford University Press.
- Sharma, I., & Birman, S. (2024). Biodiversity loss, ecosystem services, and their role in promoting sustainable health *The climate-health-sustainability nexus: understanding the interconnected impact on populations and the environment* (pp. 163-188): Springer.
- Shivambu, N., Shivambu, T. C., & Downs, C. T. (2021). Predicting the potential distribution of non-native mammalian species sold in the South African pet trade. *Diversity*, *13*(10), 478.
- Sial, M. A. (2024). Diversity, evenness, & richness of wild mammals along the Sutlej River, Punjab, Pakistan. *Frontiers in Ecology and Evolution*, *12*, 1447694.
- Tourani, M., Sollmann, R., Kays, R., Ahumada, J., Fegraus, E., & Karp, D. S. (2023). Maximum temperatures determine the habitat affiliations of North American mammals. *Proceedings of the National Academy of Sciences, 120*(50), e2304411120.
- Vuorinen, K. E., Oksanen, T., Oksanen, L., Vuorisalo, T., & Speed, J. D. (2021). Why don't all species overexploit? *Oikos*, *130*(11), 1835-1848.

 Table 1. Mammalian species of Bahawalnagar, Pakistan

S			Common name	Scientific name	Species Authority	IUC
r.	Order	Family				N
1			Blackbuck	Antilope	(Linnaeus, 1758)	LC
	Artiodactyla	Bovidae		cervicapra		
2			Blue Bull	Boselaphus	(Pallas, 1766)	LC
	Artiodactyla	Bovidae		tragocamelus		
3	Artiodactyla	Bovidae	Chinkara	Gazella bennettii	(Sykes, 1831)	LC
4	Artiodactyla	Suidae	Indian Wild Boar	Sus scrofa	Linnaeus, 1758	LC
5	Carnivora	Canidae	Asiatic Jackal	Canis aureus	Linnaeus, 1758	LC
6	Carnivora	Canidae	Wolf	Canis lupus	Linnaeus, 1758	LC
7		Herpesti	India Grey Mongoose	Herpestes	(É. Geoffroy Saint-	LC
	Carnivora	dae		edwardsii	Hilaire, 1818)	
8		Herpesti	Small Indian Mongoose	Herpestes	(É. Geoffroy Saint-	LC
	Carnivora	dae		javanicus	Hilaire, 1818)	
9		Viverrid	Small Indian Civet	Viverricula indica	(Geoffroy Saint-	LC
	Carnivora	ae			Hilaire, 1803)	
1			Indian or Bengal Fox	Vulpes	(Shaw, 1800)	LC
0	Carnivora	Canidae		bengalensis		
1			Common Red Fox	Vulpes vulpes	Blyth, 1854	LC
1	Carnivora	Canidae		pusillus		
1			Jungle Cat	Felis chaus	Schreber, 1777	LC
2	Carnivora	Felidae				
1	Erinaceidomo	Erinacei	Indian Long-eared	Hemiechinus	Gray, 1830	LC
3	rpha	dae	Hedgehog	collaris		
1		Soricida	Asian House Shrew	Suncus murinus	Linnaeus, 1766	LC
4	Insectivora	e				
1		Leporid	Indian Hare	Lepus nigricollis	F. Cuvier, 1823	LC
5	Lagomorpha	ae				
1		Sciurida	Northern Palm Squirrel	Funambulus	Wroughton, 1905	LC
6	Rodentia	e		pennantii		
1		Hystrici	Indian Crested	Hystrix indica	Kerr, 1792	LC
7	Rodentia	dae	Porcupine			
1			Indian Desert Jird	Meriones	Jerdon, 1867	LC
8	Rodentia	Muridae		hurricane		
1			Soft-furred Field Rat	Millardia meltada	Gray, 1837	LC
9	Rodentia	Muridae	TT	1,6	17.	T ~
2	D. J. C.		House Mouse	Mus musculus	Linnaeus, 1758	LC
0	Rodentia	Muridae	II. D.	D	1550	1.0
2	D. J. C.		House Rat	Rattus rattus	Linnaeus, 1758	LC
1	Rodentia	Muridae				